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the boundary conditions: the sines and cosines of a Fourier
series for periodic problems, spherical harmonics for prob-We make several observations about eigenvalue problems using,

as examples, Laplace’s tidal equations and the differential equation lems in latitude and longtitude on a sphere, Chebyshev
satisfied by the associated Legendre functions. Whatever the dis- polynomials for a finite, nonperiodic interval, or rational
cretization, only some of the eigenvalues of the N-dimensional ma- Chebyshev functions for an infinite interval. Next, approxi-trix eigenvalue problem will be good approximations to those of

mate the eigenmode u(x) by the N-term truncation of thethe differential equation—usually the N/2 eigenvalues of smallest
magnitude. For the tidal problem, however, the ‘‘good’’ eigenvalues spectral series with (as yet) unknown coefficients {aj}:
are scattered, so our first point is: It is important to plot the ‘‘drift’’
of eigenvalues with changes in resolution. We suggest plotting the
difference between a low resolution eigenvalue and the nearest u(x) P uN(x) ; ON

j51
ajfj(x). (1.1)

high resolution eigenvalue, divided by the magnitude of the eigen-
value or the intermodal separation, whichever is smaller. Second,
as a final safeguard, it is important to look at the Chebyshev coeffi- Third, substitute uN(x) into the differential equation and
cients of the mode: We show a numerically computed ‘‘anti-Kelvin’’ demand that the residual be zero at each of N ‘‘collocation’’
wave which has little eigenvalue drift, but is completely spurious

or ‘‘interpolation’’ points {xj}, where there is a canonicalas is obvious from its spectral series. Third, inverting the roles of
choice of such points associated with each of the standardparameters can drastically modify the spectrum; Legendre’s equa-

tion may have either an infinite number of discrete modes or only basis sets [1]. These collocation conditions translate a linear
a handful, depending on which parameter is the eigenvalue. Fourth, differential eigenproblem into an N-dimensional matrix
when the modes are singular but decay to zero at the endpoints (as eigenvalue problem, where the eigenmode is now a columnis true of tides), a tanh-mapping can retrieve the usual exponential

vector containing the spectral coefficients aj. The final stepaccuracy of spectral methods. Fifth, the pseudospectral method is
more reliable than deriving a banded Galerkin matrix by means of is to call library software to solve the matrix eigenvalue
recurrence relations; the pseudospectral code is simple to check, problem. If the eigenmodes are also needed, one may eval-
whereas it is easy to make an untestable mistake with the intricate uate them by simply substituting the appropriate matrix
algebra required for the Galerkin method. Sixth, we offer a brief

eigenmode as the coefficients of uN(x) and then summingcautionary tale about overlooked modes. All these cautions are
the series at each point of the graph. If u(x) is nonsingularapplicable to all forms of spatial discretization including finite differ-

ence and finite element methods. However, we limit our illustrations on the expansion interval, then the error decreases as
to spectral schemes, where these difficulties are most easily re- exp(2qN) for some constant q. (For infinite interval prob-
solved. With a bit of care, the pseudospectral method is a very lems, the error falls as exp(2qNr ) for some r , 1 (typically
robust and efficient method for solving differential eigenproblems,

As or Sd)).even with singular eigenmodes. Q 1996 Academic Press, Inc.
It all sounds too good to be true. Our theme is that

actually, the pseudospectral method is as good as adver-
tised—but only if one is a little bit careful. It is a truism1. INTRODUCTION
in auto safety that most accidents occur within 10 miles of
home. Its arithmurgical equivalent is that no calculationDifferential eigenvalue problems are so common that

there would seem to be little new to say. The book by is too simple to screw up.
All our cautions apply to finite difference, finite element,Boyd [1] describes a simple procedure [2–4] which, for

sufficiently smooth solutions, is guaranteed to give an error and finite volume computations of eigenvalues, too. We
use only spectral methods, however, because (i) they arewhich decreases exponentially fast with N, the number of

degrees of freedom. The steps are the following. First, the most efficient and (ii) their exponential accuracy allows
us to easily immunize our results against these diseases.choose a set of spectral basis functions {fj(x)} that satisfy
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2. TWO EXAMPLES: LEGENDRE’S EQUATION AND lu 2 en 2 sz 5 0
LAPLACE’S TIDAL EQUATIONS

eu 2 ln 1 Dz 5 0 (2.7)

The associated Legendre functions satisfy su 2 Dn 2 «l(1 2 e2)z 5 0,

hD2 1 V0(1 2 e2) 1 Ej, u 5 0, e [ [21, 1], (2.1) where l is the frequency divided by 2 V, where V is the
angular frequency of the earth’s rotation, e is the cosine

where e is the cosine of colatitude and the differential of colatitude, s the zonal wavenumber, « 5 4 V2 a2/gH is
operator D is ‘‘Lamb’s parameter,’’ where a is the radius of the earth, g

is the gravitational constant, and H is the mean depth of
the ocean, z is the surface height displacement (for ocean

D ; (1 2 e2)
d

de
(2.2) tides), and u and v are the velocities multiplied by the sine

of colatitude (and by i for the north–south current v) and
nondimensionalized using 1/(2V) as the time scale and awith
as the length scale. In different applications, any of the
three parameters (l, s, «) may be the eigenvalue while theu 5 Ps

n(e), V0 5 n(n 1 1), E 5 2s2 (2.3)
other two are fixed.

In atmospheric tides « is the eigenparameter. As re-The periodicity of the sphere in longitude demands that s
viewed in Chapman and Lindzen’s monograph [8], thebe an integer. With V0 as the eigenparameter, we see that
analogy with classical Sturm–Liouville theory led to somethe Legendre equation is a typical Sturm–Liouville prob-
30 years of confusion. It was assumed that «, which is thelem with an infinity of discrete eigenmodes.
square of the vertical wavenumber for atmospheric tides,Through the change of coordinate
always had to be positive. It was finally realized in the
1960s, independently by Kato and Lindzen, that because

e 5 tanh( y/M)) (‘‘Mercator coordinate’’), (2.4)
the tidal equations have so-called ‘‘apparent singularities’’
at the ‘‘critical’’ or ‘‘inertial’’ latitudes, classical Sturm–

where M is a constant, Legendre’s equation can also Liouville theorems need not apply. There are also an infi-
be written, using subscript ‘‘y’’ to denote differentiation nite number of modes with negative « for the diurnal tide.
with respect to that coordinate and taking M 5 1 for We shall return to the issue of ‘‘missing modes’’ in a
simplicity, later section. In the next section, we describe another diffi-

culty that arises for tides in an ocean bounded by meridians.
uyy 1 hV0 sech2( y) 1 Eju 5 0, y [ [2y, y]. (2.5) To understand some of the peculiarities of the tides, it

is helpful to also use the ‘‘equatorial beta-plane,’’ which
This is identical in form with the one-dimensional is a consistent asymptotic approximation to the spherical
Schroedinger equation of quantum mechanics with E as tidal equations in the limit « ⇒ y for fixed l, s:
the kinetic energy and the potential energy V( y) 5
2V0 sech2( y). However, E is the eigenvalue and V0 is a lu 2 yn 2 sz 5 0
fixed parameter which specifies the strength of the po-

yu 2 ln 1 zy 5 0 (2.8)tential.
The reversal of the roles of the parameters changes su 2 ny 2 «lz 5 0.

everything. There is only a finite number of discrete, spa-
tially localized ‘‘bound states.’’ If V0 5 n (n 1 1) for some Though only an approximation, this has the great advan-
positive but otherwise arbitrary n, the discrete modes, from tage that it can be solved exactly by Hermite functions.
page 1651 of [22], are

3. PSEUDOSPECTRAL METHODS FOR PROBLEMS
Ej 5 2(n 2 j)2, j 5 0, 1, 2, ..., jmax , (2.6) WITH WEAK ENDPOINT SINGULARITIES

Both Legendre’s equation and the tidal equations arewhere jmax is the largest integer smaller than n. The rest
of the spectrum is a continuous spectrum: for every positive singular at the endpoints where the meridians (curves of

constant longitude) converge to a single point. When theE, there is an eigenmode which is bounded (but oscillatory
rather than decaying) as u yu ⇒ y. domain is the entire surface of a sphere, however, these

coordinate singularities are only apparent. (The reason isOur second example is the set of three linear equa-
tions for atmospheric and oceanic tides due to Laplace that we are free to rotate the coordinate system and, there-

fore, the location of the coordinate singularities, to arbi-[6–10],
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from a global ocean or atmosphere (with l or « as an
eigenparameter) to an ocean basin bounded by great circles
of constant longitude (with zonal wavenumber s as an
eigenparameter) alters both the physics and the mathemat-
ics. On an ocean-covered planet, the whole area around
the coordinate singularity is water and there is nothing
special about the pole. In contrast, at the poles, the coast-
lines of the meridian-bounded ocean basin meet in a sharp-
angled corner. The pole is physically distinct because it is
the only point in the hemisphere where the coastline makesFIG. 1. Schematic of an ocean basin (wavy shading) bounded by
an abrupt, discontinuous turn. The solutions of partial dif-meridians.
ferential equations, even the Laplace equation, are usually
singular in the corners. The most familiar physical manifes-

trary points on the sphere, but this cannot change the tations of these corner singularities is in structural mechan-
positions of any real singularities of the eigenmodes.) The ics where corners are regions of high stress. Many homes
implicit boundary conditions at the poles are that the solu- have networks of cracks radiating from the corners of door
tion somehow stay bounded, even though the coefficients openings. Commercial jets have rounded windows because
of the differential equation are singular. It is unnecessary the first passenger jet, the Comet, had to be withdrawn
to explicitly impose boundary conditions at the endpoints from service after repeated crashes initiated by cracks that
e 5 61 because the pseudospectral method automatically began at the corners of its square windows and then opened
picks out those modes—the Associated Legendre func- up to break the aircraft’s back.
tions for (2.1)—which are ‘‘nice’’ at the poles. Boyd [5] It follows that in a bounded basin, we shall lose spectral
shows that Fourier series, Chebyshev polynomials, and accuracy because of corner singularities. Rounding the cor-
spherical harmonics (which are the exact eigenmodes!) all ners, as in aircraft windows, is not feasible because the
work fine for (2.1). coastline would no longer follow lines of constant longi-

In the quantum mechanics application of Legendre’s tude: a one-dimensional eigenvalue problem would be-
equation (mapped to the infinite interval, (2.2)) and also come two-dimensional. Fortunately, there is a good alter-
for tides in an ocean bounded by meridians, the situation native: Apply the Mercator transformation and then use
is different. The zonal wavenumber s is no longer quan- any spectral basis which gives exponential convergence for
tized, but it is the eigenvalue and may assume arbitrary functions analytic on the real y-axis [11–13].
values. For large u yu @ 1, Legendre’s equation (2.2) re- The rational Chebyshev functions TBj( y) [14] are a good
duces to choice. These functions are so named because they are

rational functions in y. However, the easiest way to imple-
uyy 1 Eu 5 0, u yu R y (3.1) ment them is to recognize that they are the images under

a change of coordinate of the terms of an ordinary Fourier
which implies that the solutions are asymptotically cosine series.

We expand
u p exp(2Ï2Ey) as y ⇒ y. (3.2)

u(e) 5 ON21

j50
aj cos( jt), (3.4)This shows that exponential decay is possible only when

E , 0. When we translate back to spherical coordinates,
(3.2) is equivalent to

where the trigonometric coordinate t is related to the cosine
of colatitude e viau p (1 2 e)Ï2E/2 as e ⇒ 1. (3.3)

In other words, the solution has an algebraic branch point
at both poles unless (As) (2E)1/2 is equal to an integer. The e 5 tanh(L cot(t)) ⇔ t 5 arc cot Harc tanh(e)

L J, (3.5)
analysis for the tidal equation yields the same answer; all
solutions of spherical problems will have branch points of
the form of (3.3). (The associated Legendre functions of where L is a user-choosable constant, the ‘‘map parame-

ter.’’ (For simplicity, we take L 5 1 in most calculationsodd wavenumber include a factor of (12 e2)1/2 which is
just what is needed so that the rest of the eigenfunction is here, but this can be varied to improve the rate of conver-

gence [14–16].) The collocation points are evenly spacedanalytic (in fact, a polynomial!).)
Figure 1 is a schematic that illustrates why the change in t:
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ti 5 f
(2i 2 1)

2N
,

(3.6)

i 5 1, 2, ..., N ⇔ ei 5 tanh SL cot Hf
(2i 2 1)

2N JD.

The magic of the transformation is that the grid points are
clustered with exponential density near the endpoints in
the sense that the separation between nearest neighbors
close to e 5 61 decreases exponentially fast with N:

ei P 1 2 2 exp H2
4L

f(2i 2 1)
NJ,

i
N

! 1. (3.7)

In contrast, the nearest neighbor separation for a Cheby-
shev expansion in e is O(1/N2). Squeezing the grid points

FIG. 2. Absolute values of the spectral coefficients for the zonalclose to the singularities recovers spectral accuracy [11–13].
velocity for the fortnightly tide (l 5 sQj) with Lamb’s parameter « 5 22In practice, the Mercator transformation is not always
for the second symmetric mode. The zonal wavenumber (eigenvalue) is

necessary. One can show that the coefficients of a Cheby- s 5 20.500. Circles: TBj coefficients after the globe has been transformed
shev series in e will asymptotically decay as to the Mercator coordinate with map parameter L 5 2. X’s: coefficients

of Chebyshev polynomials. (Because the east–west current is symmetric
with respect to the equator, all the odd degree coefficients are zero, soaj p const/ns11 if branch pt. of type (1 2 e)s/2,

(3.8) only the even coefficients {a0, a2, a4, ...} are shown.)
s ? even integer.

(Spherical harmonics series have similar properties [1].) If tude of the mode near the singular points, the north pole
s is large, the coefficients of a Chebyshev or Legendre and south poles.) The Mercator coordinate method actu-
series will decay as a high inverse power of j, and this gives ally converges slower at first, but like the turtle in the
high accuracy for moderate N. For tidal modes, there is Aesop proverb of the rabbit and the turtle, the Mercator/
also a tendency towards equatorial confinement which in- TBj scheme eventually overtakes the Chebyshev polyno-
creases with «, especially for the lowest modes. mial series. Boyd [12] gives other examples of a ‘‘cross-

Thus, O’Connor [6] obtained good results even without over point,’’ here at about a22, where the asymptotically
the mapping. His choice of « 5 22 confined the lowest few faster method finally overtakes the initially faster-but-
modes, which would otherwise have very slowly conver- asymptotically slower Chebyshev polynomial series.
gent series because s is small, so that he was able to obtain The spectral method is easy to implement. The chain
six places of accuracy for all eigenmodes with N , 100. rule shows that
For smaller «, however, the low modes (small s) would
have very slowly convergent spectral series without the d

de
5 2

sin2 (t)
L sech2hL cot(t)j

d
dt

⇔ D 5 2
sin2(t)

L
d
dt

(3.9)Mercator transformation.
Figure 2 compares the spectral coefficients for the second

symmetric mode for the fortnightly tide as computed using which can be iterated to obtain higher derivatives. The
the Mercator coordinate with rational Chebyshev basis operator D takes an especially simple form because
functions and also the coefficients computed using Cheby- (1 2 e2) 5 sech2(L cot(t)), which is just what is needed
shev polynomials in the coordinate e. (The Chebyshev to cancel the same factor in the denominator of the ‘‘metric
series is not quite the same basis as employed by O’Connor, factor’’ on the left of (3.9). Thus, the Legendre equation
but should be equally sensitive to the polar branch points becomes, in terms of the trigonometric coordinate t,
of the eigenmode.)

We see that if only moderate accuracy of three or four sin4(t)
L2

d2u
dt2 1 2

sin3(t) cos(t)
L2

du
dt (3.10)

decimal places is needed, Chebyshev polynomials are quite
effective. However, the Chebyshev coefficients plateau and
the coefficients beyond a10 decrease very slowly with in- 1 hV0 sech2[L cot(t)] 1 Eju 5 0.
creasing degree. (The plateau is at a10 p 1023, instead of
at O(1), because this mode is equatorially trapped, so the The N 3 N matrix eigenvalue problem equivalent to (3.10)

is (with E as eigenvalue)singular factor (1 2 e2)s/2 is weakened by the small ampli-
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TABLE I

Matlab Code to Solve Legendre’s Equation with Mercator Coordinate Transformation

N560 % Number of collocation points, M51; % Map parameter
for j51:N % Collocation points t;
t(j)5pi*(2*j21)/(2*N); sechsq(j)5sech(L* cos(t(j))/sin(t(j)) )`2;
end
phi25zeros(n,n); % grid point values of basis function
phiDD25zeros(n,n); % grid point values of operator D (squared!)
for i51:N % Outer loop over collocation point (row) index
ss5sin(t(i)); cc5cos(t(i));

for j51:N % Inner loop over basis function (column) index
jj5j21;

phi2(i,j)5cos(jj*t(i));
pt52jj*sin(jj*t(i)); ptt52jj*jj*phi2(k,j);

phiDD2(k,j)5 ss*ss*ss*(ss*ptt 12*cc*pt)/(L*L);
end

end
for i51:N, for j51:N
AA(i,j)5 phiDD2(i,j)1nu*sechsq(i)*phi2(i,j) ;
BB(i,j)52phi2(i,j);
end end
[VV,EE]5eig(A,B);
% The eigenvalues E are the diagonal elements of EE; the spectral
% coefficients of the eigenvectors are the columns of VV.

Aa 5 EB, (3.11) 4. DISTINGUISHING ‘‘GOOD’’ EIGENVALUES FROM
‘‘BAD’’ EIGENVALUES

where the elements of the column vector a are the coeffi- One special curse of eigenvalue calculations is that an
N-dimensional matrix usually has N eigenvalues. Whencients of the Fourier series (3.4) and the elements of the

square matrices are the matrix is the discretization of a differential equation
(by any method), all the matrix eigenvalues will not be
good approximations to those of the differential equation.
The reason is that the eigenfunctions of the differentialAij 5

sin4(ti)
L2 h2( j 2 1)2 cos(( j 2 1)ti)j

equation oscillate more and more rapidly as the mode
number j increases. For a classical Sturm–Liouville prob-

1 2
sin3(ti) cos(ti)

L2 h2( j 2 1) sin(( j 2 1)ti)j (3.12) lem, the error is smallest for the smallest eigenvalue and
then increases rapidly until the matrix eigenvalues become

1 V0 sech2[L cot(ti)] cos(( j 2 1)ti), useless as approximations to those of the differential equa-
tion as illustrated in Fig. 3. For ‘‘nice’’ eigenvalue problems,Bij 5 2cos(( j 2 1)ti).
one typically obtains about N/2 matrix eigenvalues that
are within a few percentages of those of the differential
equation, which motivated the ‘‘eigenvalue Rule-of-Table I is a complete Matlab code for solving the Legendre
Thumb’’ on page 100 of [1].eigenvalue problem. The pseudospectral scheme for the

However, the N/2 estimate may be wildly in error fortidal equations is identical except that because the latter
problems such as the quantum mechanics application ofis a system of three equations in three unknowns, the
Legendre’s equation, where there are only a handful ofmatrices (of total dimension 3N) must be evaluated as nine
localized bound states—three for the case illustrated be-N 3 N blocks. The code omits the lines needed to graph
low—regardless of the numerical resolution. Since the ele-the eigenfunctions, compare results for different N, and
ments of the continuous spectrum are oscillatory for largeso on, and it may be hard to follow in detail if one is
u yu and thus have an infinite number of crests and troughsunfamiliar with Matlab. However, the major theme of the
on y [ [2y, y], it is obvious that a truncated sum oftable is its brevity: just 20 lines. Even with the change of

coordinate, the pseudospectral method is not tricky or rational Chebyshev functions, or any other standard basis
set, cannot furnish an accurate representation. We havecomplicated!
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eigenvalue at low resolution and whatever high resolution
eigenvalue is closest to it.

The second issue is: what should we compare the drift
to? The obvious choice is the magnitude of the jth eigen-
value itself. However, for the Legendre equation, lj 5
2j ( j 1 1). When j is large, an error which is O( j) is
unacceptable because the ‘‘intermodal separation,’’

sj ;Hul1 2 l2u, j 5 1,

Ashulj 2 lj21u 1 ulj11 2 ljuj, j . 1,
(4.3)

is O(2j) so that the numerical eigenvalue is no better than
a random guess in the correct range. However, comparing
the resolution-dependent drift to the eigenvalue, which is
O( j 2) and, therefore, large, compared to the intermodal
separation for large j, may give the appearance that the

FIG. 3. Relative errors, as a function of matrix mode number j, for eigenvalue is ‘‘good.’’
Legendre’s differential equation for zonal wavenumber one, as computed We therefore recommend assessing the goodness of ei-
using the tanh/cot map with L 5 1, N 5 60 basis functions. The exact genvalues by making a log/linear plot of one of the twoeigenvalues are lj 5 2j ( j 1 1), j 5 1, 2, .... [lj 5 V0].

ratios,

rj,ordinal ;
min(ulju, sj)

dj,ordinal
(4.4)to use other strategies to compute the continuous spec-

trum [17].
How do we tell the ‘‘good’’ eigenvalues from the ‘‘bad,’’

rj,nearest ;
min(ulju, sj)

dj,nearest
(4.5)

i.e., inaccurate eigenvalues? The obvious answer is to com-
pare the eigenvalues for different N; only those whose
difference or ‘‘resolution-dependent drift’’ is small can which are both large when the eigenvalue approximation
be believed. is accurate. Figure 4 shows these ratios for Legendre’s

But which pairs of eigenvalues should be compared?
For many classical problems, the eigenvalues for different
N are in direct correspondence after sorting the modes
by eigenvalue, smallest first. (Sorting is usually necessary
because library eigenvalue routines typically return the
eigenvalues and eigenvectors in a very unpredictable or-
der.) One can then use what we shall dub the ‘‘ordinal
drift,’’

dj,ordinal ; ul(N1)
j 2 l(N2)

j u, (4.1)

where l(N)
j is the jth eigenvalue (after the eigenvalues have

been sorted) as computed using N spectral coefficients.
For some problems, however, there are spurious modes

of small eigenvalues which are inserted between the true
eigenvalues. The ‘‘ordinal drift’’ may falsely imply that
many numerical eigenvalues are inaccurate when they in
fact match closely the eigenvalues of larger N and different

FIG. 4. The drift ratios rj,nearest (circles) and rj,ordinal (x’s) are plottedmode numbers j. In such cases, it is therefore much more
on a logarithmic scale versus mode number j. The modes are ordered byuseful to assess modes by the ‘‘nearest neighbor’’ drift:
absolute value of eigenvalue with j 5 1 the smallest. The ratios compare
N1 5 60 and N2 5 90, where N is the number of collocation points

dj,nearest ; min
k[[1,N2]

ul(N1)
j 2 l(N2)

k u. (4.2) (terms in the spectral series). The map parameter L 5 1. The differential
equation, which is Legendre’s with V0 5 8.75, has only three discrete
eigenvalues (‘‘bound states’’). The drift ratios are defined so that the
‘‘good’’ eigenvalues appear at the top of the graph.The nearest neighbor drift is the difference between the jth
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whose height and zonal currents are symmetric with respect
to the equation (n odd), the formula applies to the antisym-
metric modes, too.

Table II compares the beta-plane formulas with numeri-
cal calculations on the globe. Although the approximation
is accurate only for the three or four eigenvalues of smallest
magnitude, it correctly reproduces the bimodal distribution
of s. In particular, the analytical formula resolves the mys-
tery of why the eigenvalues s 5 20.500 and 225.99 (modes
11 and 67 in Fig. 4) are both computed very accurately:
both correspond to the n 5 0 mode.

A more accurate approximation to modes with large s
may be obtained by noting that when s2 @ «, it is a good
first approximation to set « 5 0. In this case, Eq. (7.18) of
Longuet-Higgins [7] shows that the tidal equations, after
reduction, become the equation satisfied by the associated

FIG. 5. The ratio rj,nearest versus mode number j, where the eigenvalues Legendre functions. Applying (2.6) with E 5 2s2 and
are ordered by increasing absolute value with j 5 1 as the smallest and V0 5 2s/l, we obtain
where the two resolutions are N 5 36 and N 5 50. Tides in a bounded
basin for frequency ratio l 5 sQj with Lamb’s parameter « 5 22. N of the
matrix eigenvalues are infinite and have been purged before plotting.

s 5 n 1 1/2 2
1

2l
(4.7)

The size of the matrix problem is 3N 3 3N.

6
1
2 ! 1

l2 2 4 Hn 1 1/2
l

2 1/4J, n 5 0, 1, 2, ..., nmax,differential equations for the quantum case, where the
potential is strong enough to create precisely three bound
states. The ‘‘good’’ eigenvalues, which are highly accurate

where nmax is the largest integer for which s is real andapproximations to the three bound states, appear at the
negative. Table III shows that the ‘‘zero-epsilon’’ approxi-top of the graph. The ‘‘bad’’ eigenvalues, such that these
mation is quite accurate for the six modes of largest usuratios are O(1), appear at the bottom.
(right half of the table) and quite awful for the modesIt is annoying to have to define two ‘‘drift ratios’’ instead
corresponding to the plus sign in (4.7). Although this ap-of one. However, Fig. 4 shows that for this problem, the
proximation fails for small s and also does not predict‘‘ordinal’’ ratio is much closer to one and much less scat-
any discrete modes with complex eigenvalues, it is moretered than rj,nearest. The reason is that it may happen by
realistic than the beta-plane, in that it predicts only a finitedumb luck that one of the high resolution eigenvalues is
number of discrete modes. The beta-plane model, like itsclose to a low resolution eigenvalue. The result is that
quantum equivalent (the harmonic oscillator, also solvedrj,nearest may be as large as O(100), even though the approxi-
by Hermite functions), predicts an infinite number of dis-mate eigenvalue is a random number.
crete modes. In reality, there seems to be only a finiteFor some eigenvalue problems, one must simply live
number of discrete modes while the rest of the spectrumwith the greater scatter of rj,nearest. Figure 5 illustrates this
is a continuous spectrum.ratio for the numerical eigenmodes of Laplace’s tidal equa-

A plot of the reciprocals of the error ratios is a verytion for the fortnightly tide (l 5 sQj). Remarkably, the
useful tool for distinguishing accurate from inaccurate ei-‘‘good’’ eigenvalues form two clusters separated by a num-
genvalues. However, analytical approximations, such asber of garbage modes.
the beta-plane and ‘‘zero-epsilon’’ approximations forIn the equatorial beta-plane approximation, we can ana-
ocean tides, may be valuable also in understanding thelytically compute the eigenvalues where n is the mode
numerical results. We must also emphasize that it is im-number in the usual geophysical convention:
portant to look at the spectral coefficients of the modes,
and not just at the eigenvalues.s 5 lÏ«, n 5 21 [Kelvin wave] (4.6a)

The equatorial beta-plane version of the tidal equations
(2.8) provides a cautionary tale. The numerical solutions 5 2

1
2 H1

l
6 Ï(1/l2) 1 4l2« 2 4(2n 1 1)Ï·«J,

gave a resolution-independent eigenvalue equal to the neg-
ative of the Kelvin wave whose exact eigenvalue is givenn 5 0, 1, 2, .... (4.6b)
by (4.6a). Inspection of the eigenvalues alone is not suffi-
cient to identify the spuriousness of this mode because itsAlthough O’Connor’s application needs only the modes
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TABLE II

Comparison of Numerically Computed Eigenvalues s for Tidal Modes on the Sphere with the Predictions of
Equatorial Beta-Plane for the Fortnightly Tide

Mode no. b-plane Spherical Difference b-plane Spherical Difference

21 0.173 0.164 20.0098 — — —
0 20.530 20.500 0.0301 226.83 225.99 0.84
1 20.897 20.820 0.0777 226.47 223.87 2.60
2 21.275 21.236 0.0390 226.10 221.62 4.48
3 21.665 21.900 20.2350 225.72 219.22 6.51
4 22.068 23.085 21.017 225.34 216.54 8.80

numerical eigenvalues vary as slowly with N as those of lowest basis functions in turn and integrating to obtain
N integral constraints to determine the coefficients—thethe true Kelvin wave.

Nevertheless, this mode is nonsense. It is known that if required integrations can often be bypassed by manipula-
tions of the recurrence relations instead. In the presiliconthe beta-plane, which is unbounded in latitude, is modified

by a coastal boundary along a circle of latitude, then this era, Galerkin’s method was very appealing because for
simple problems, the Galerkin matrix is banded withbounded ocean does support an ‘‘anti-Kelvin’’ wave which

is boundary-trapped to the coast and propagates in the mostly zero matrix elements. In tidal theory [8–10], for
example, Hough derived a tridiagonal matrix by using thedirection opposite that of the equatorially trapped Kelvin

wave. Since the grid points span only a finite interval, this spherical harmonics recurrences. He then converted the
matrix into a continued fraction to create a rapidly conver-anti-Kelvin wave emerges from the infinite interval nu-

merics. gent iteration for the eigenvalues: a numerical method that
was not too onerous even for paper-and-pencil calcula-Figure 6 compares the spectral coefficients and zonal

velocity for the true and false Kelvin waves. The coeffi- tions. Fox and Parker’s [18] monograph is mostly a cata-
logue of similar recurrence computations using Cheby-cients of the physical mode converge exponentially as

shown by a near-linear decrease on a logarithmic plot. In shev polynomials.
However, we live in an age when even a personal com-contrast, the coefficients of the anti-Kelvin wave diverge

puter has a megaflop execution speed, and our prioritiesexponentially fast! As a result, the zonal velocity oscillates
are different. Banded matrices are still useful when thewildly with latitude, dominated by the highest few basis
eigenproblem is to be solved symbolically [19], but the QZfunctions that are retained in the truncation.
algorithm causes ‘‘fill-in’’ so that it is just as expensive for
a sparse matrix as a dense matrix. A banded Galerkin5. GALERKIN-BY-RECURRENCE: THE DANGER OF
discretization matrix saves us nothing over a dense pseudo-BEING TOO CLEVER
spectral method if the linear algebra is to be handed off
to the QZ algorithm. Unfortunately, the use of recurrenceThe usual spectral basis functions satisfy a vast number

of recurrence relations. When the discretization is Galer- relations can cause a lot of trouble.
The reason is that to test a program, one usually simpli-kin’s method—multiplying the residual by each of the N

TABLE III

Same as Table II except that the « 5 0 Approximation (4.7) Is Compared with the Numerical Calculations of s

Mode no. « 5 0: Eq. 4.7 Spherical Difference « 5 0: Eq. 4.7 Spherical Difference

21 — 0.164 — — — —
0 0 20.500 20.50 226 225.99 0.01
1 20.084 20.820 20.74 223.92 223.87 0.05
2 20.276 21.236 20.96 221.72 221.62 0.10
3 20.619 21.900 21.28 219.38 219.22 0.16
4 21.199 23.085 21.81 216.81 216.54 0.27
5 22.169 27.21 6 i 1.00 Complex 213.83 213.34 0.49
6 24.35 26.21 6 i 5.32 Complex 29.65 Complex —



SNARES IN EIGENVALUE CALCULATIONS 19

FIG. 6. a. Absolute values of the spectral coefficients for the Kelvin and anti-Kelvin modes. b. Graphs of u/sin(u) for the Kelvin wave (where
u is colatitude) and u itself for the spurious anti-Kelvin mode.

fies the differential equation to one which has a known, algorithm, after the simpler scheme for standard eigen-
value problems from which the QZ method was derived.)exact solution. When the tidal equations are thus simpli-

fied, the exact solution is a single spherical harmonic (for It is available in most software libraries and is a built-in
command in Matlab. Its main drawback is cost. Becauseeach unknown) and the Galerkin matrix is diagonal. Thus,

the test can tell us nothing about whether we have correctly it uses iteration, rather than a finite set of steps, a precise
estimate of cost is impossible, but experience has shownapplied and coded the recurrence relations for the off-

diagonal elements. that the QZ cost is O(10 N3) floating point operations.
Alternatively, one can use a local iteration, that is, oneIn contrast, the elements of the pseudospectral matrix

are nontrivial even when the differential equation is simpli- that computes a single mode at a time. Orszag [2] shows
that one can compute individual modes at a cost propor-fied to constant coefficients. A pseudospectral program

can pass a simplified test and yet fail for the real problem, tional to N2, which is a vast improvement over the N3

expense of the QZ method. Indeed, when one is tracingonly when the coefficients of the differential equation are
coded incorrectly. out a parameter space and repeatedly computing the same

mode for slightly different parameters, such ‘‘local’’ itera-O’Connor ran afoul of this problem [6]. A small slip in
the messy algebra of the recurrence relations required a tions may be very useful.

The danger is that it is easy to miss modes with a one-corrigendum because the tabulated eigenvalues were cor-
rupted. mode-at-a-time method. Boyd used an iterative finite dif-

ference scheme [20], together with an artificial viscosity,The recurrence relations are seductive both because of
their historical importance and their intrinsic aesthetic to compute the eigenvalues of
beauty. Sometimes, though, it is better to resist the tempta-
tion to be clever. KISS—keep it simple, stupid—is a good
philosophy for a number-cruncher. uxx 1 H1

x
2 lJ u 5 0, u(26) 5 u(6) 5 0. (6.1)

6. MISSING A MODE: LOCAL VERSUS GLOBAL
A pseudospectral QZ calculation, using a mapping to shiftMETHODS FOR SOLVING THE MATRIX
the integral of integration to detour around the singularityEIGENVALUE PROBLEM
in the lower half-plane, confirmed the earlier calcula-
tions—except that the third and seventh eigenmodes hadThe QZ algorithm, employed here to solve the N-dimen-

sional generalized matrix eigenvalue problem, has been been missed by local iteration [21].
Admittedly, this is an unusually nasty eigenproblem be-refined into a very reliable piece of software that will take

an arbitrary pair of square matrices and return all N eigen- cause the eigenmodes are logarithmically singular on the
interior of the interval. Still, in stability calculations, thevalues, even if some are infinite, or the problem is otherwise

deficient. (This algorithm is sometimes also called the QR eigenvalue could lie almost anywhere in the complex plane,
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making it easy to miss a mode. If the omitted instability ACKNOWLEDGMENTS
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